
        
            
                
            
        

    
The Woodnotes Guide to Vim for Writers



Randall Wood
([bookmark: tex2html1]www.therandymon.com)



 



[bookmark: SECTION00010000000000000000]
Contents





	[bookmark: tex2html56]List of Figures

	[bookmark: tex2html57]Why Vim for Writers?

	[bookmark: tex2html58]Gvim vs. Vim

	[bookmark: tex2html59]Line Wrapping and Text Width

	[bookmark: tex2html60]Files (Opening, Saving, etc.)

	[bookmark: tex2html61]General Editing of Text

	[bookmark: tex2html62]Getting Around with the Cursor

	[bookmark: tex2html63]Basic Movement

	[bookmark: tex2html64]Navigation by Search






	[bookmark: tex2html65]Scrolling

	[bookmark: tex2html66]Bookmarks (``Marks'')

	[bookmark: tex2html67]Selecting Text, Cutting and Pasting

	[bookmark: tex2html68]Visual Mode

	[bookmark: tex2html69]Using Named Registers






	[bookmark: tex2html70]Searching and Replacing

	[bookmark: tex2html71]Using Ranges

	[bookmark: tex2html72]Multiple Windows, Buffers, and Tabs

	[bookmark: tex2html73]Inserting Special Characters

	[bookmark: tex2html74]Dealing with DOS, Unix conversion problems

	[bookmark: tex2html75]Spell Checking

	[bookmark: tex2html76]Macros

	[bookmark: tex2html77]Learning more about Vim

	[bookmark: tex2html78]Acknowledgments, License, and Version History




 



[bookmark: SECTION00020000000000000000]
List of Figures


	[bookmark: tex2html9]Files (Opening, Saving, etc.)

	[bookmark: tex2html11]General Editing Commands

	[bookmark: tex2html13]Basic Movement

	[bookmark: tex2html14]Advanced Movement

	[bookmark: tex2html15]Simple
Search Commands

	[bookmark: tex2html17]Scrolling Relative to Document

	[bookmark: tex2html18]Scrolling Relative to Screen

	[bookmark: tex2html19]Visual Mode Selection Commands

	[bookmark: tex2html20]Cutting and Pasting

	[bookmark: tex2html21]Ranges

	[bookmark: tex2html23]Some Common Digraphs






[bookmark: SECTION00030000000000000000]
Why Vim for Writers?


 Vim is well used and well liked by computer programmers and
computer scientists, but many of its features  make it a productive tool for writers and authors.  Namely, you can navigate and work efficiently using
succinct, keystroke commands, it is highly customizable, makes efficient use of
screen real estate, is fast and extremely efficient.  Furthermore, 
many of us have taken the time to get to know Vim for other purposes, and
are so impressed we'd like to make use of it for our writing projects.


However, this is not a manual on how to use or learn Vim.
Many of these exist, and all of them are better than what I could produce.
Rather, this manual is written for the writer who wants to use Vim as his
primary text editor for the purpose of producing prose, novels, fiction, a
thesis, a treatise, or similar.  If you already know how to use Vim, this Woodnotes manual will
help you use Vim efficiently as a writer or author.  It is a companion volume
to the Woodnotes Guide to Emacs for
Writers[bookmark: tex2html2]1, and covers
the same information.



Your first task then, if you haven't already done so, is to get to know Vim.  I
recommend the use of a good reference card to learn and remember the commands.
There are many available; my personal favorite is the creation of Laurent
Grégoire.[bookmark: tex2html4]2  This guide uses
the same notation as Laurent's reference card, so it would help to have it in
front of you as you continue.



The graphical vi-vim cheat sheet and tutorial[bookmark: tex2html6]3 is an excellent way to learn Vim and serves as a cheat sheet afterwards (they also have a Dvorak version!).  And of course, Vim's own tutorial (just type :vimtutor is effective, and should probably be the first place you begin learning this powerful software.






[bookmark: SECTION00040000000000000000]
Gvim vs. Vim

 


Vim has traditionally been a console application, but there is a
graphical version called Gvim as well[bookmark: tex2html8]4, which some prefer.  With the exception of spell
checking and the ability to choose among several color schemes, I'm not aware
of any great difference between the two.  You can also use console Vim in a
terminal window on your graphical desktop, which, in my opinion is the best of
all worlds, since you can take advantage of the better font rendering and
resolution while still making maximum use of your screen space (run the
terminal window in full screen mode for the best results).






[bookmark: SECTION00050000000000000000]
Line Wrapping and Text Width




Unless you choose otherwise, each line of text will extend off the screen with
no wrapping.  For authors, that's not convenient.  So issue the command
:set linebreak to wrap the text when it hits the screen edge. This is
what other software calls ``soft wrapping'' in that it conveniently manages the
text on screen but doesn't insert newlines or carriage returns in the file.
For long text works, this is probably what you want.



If however, you want for example, 80 character hardwrapped text (text formatted
with a new line after 80 characters) like in the good old days, issue
:set textwidth=80.  If you are writing, for example, a LATEX document
in which your document is a source file, this latter method may be more useful
over all.  Using the former method, what Vim considers to be a ``line'' is
actually what we would call a paragraph, and moving up by one line at a time
(using j and k) actually moves the cursor up by one paragraph
at a time.  Using the latter method, moving up one line actually moves you up
one line on the screen, which is convenient.  Otherwise, use gj and
gk to advance the cursor one screen line at a time.






[bookmark: SECTION00060000000000000000]
Files (Opening, Saving, etc.)

 


Use :e to begin editing a file and:w to write it to the disk.
Watch out if you change the name of the file when saving: this is not "save as"
but rather the command to save a file by the other name while you continue
editing the first.  That is to say, if you are editing file ``Introduction''"
and issue a :w Temp a file called ``Temp'' will be saved to the disk
which for an instant will be identical to ``Introduction.''  But as soon as you
continue typing, your new edits will continue to be applied to the file
``Introduction.'' That makes this a good way  to save temporary (working) files
as you go.  Use :saveas to save the working file under a new name and
continue editing that new file.  



One neat Vim trick of perhaps limited use to authors is the ability to specify
a list of files to edit when you call the program.  If, from the command line,
you enter vim ch1 ch2 ch3 Vim will allow you to edit each of the three
files in succession.  In that case, :wn will write the file, close
it,and then open the next (:wN opens the previous.).  You can use
:rw f to write the range r to file f (for example, :*w
dialogue will take the entire visually selected range and write it out to a
file called ``dialogue.''  Working in the other direction, :r dialogue
will take the contents of the file ``dialogue'' and insert it at the cursor. 



Finally, an easy way to go through the current file and select bits and pieces
of it for use elsewhere is to write out, appending to the other file.  For
example, once you've selected something, ":w»goodies will append
that selected text to the file ``goodies.''  You can then open up the file
``goodies'' to clean it up.





[bookmark: opening-saving][bookmark: 250]

Figure 1:
Files (Opening, Saving, etc.)
	[image: \begin{figure}\begin{tabular}{ll} \par Command & Key \\ \hline \par Edit (Open)&... ... Save as & :saveas \\ Append to file & :w>\,> \\ \end{tabular} \end{figure}]










[bookmark: SECTION00070000000000000000]
General Editing of Text




Here, too, an adequate mastery of a few common commands makes basic text
entry a lot more efficient and allows you to make edits on the fly without
stopping to take your hands off the keyboard.  They all require the control
key, because these commands are expected to be entered while you are still in
insert mode.



The most important is control-w, which deletes the most recent word
and permits you to keep typing.  Similarly, control-r x inserts the
contents of register x at the cursor.[bookmark: tex2html10]5


In command mode, use the following to speed up editing and in particular, to
take advantage of commands that allow you to, with one keystroke, position
the cursor, erase text, and begin editing.





[bookmark: general-editing][bookmark: 252]

Figure 2:
General Editing Commands
	[image: \begin{figure}\begin{tabular}{ll} \par Function & Key \\ \hline Insert before, a... ...e cursor & o,O \\ Join this line to the next & j \\ \end{tabular} \end{figure}]







A few examples will make the benefit clear.  As an author I frequently begin
a sentence and then decide halfway through that I am not pleased with what I
have begun to write. A simple c( instructs Vim to change (erase and
prepare for replacement of) everything to the beginning of that sentence.  I
can just as easily type c7b to change the last 7 words.  If I've
edited something mid-paragraph and am ready to now place the cursor at the
end of the paragraph and keep writing, it's as simple as typing a capital
A.  It's also quick to select some text using visual mode, press
d to delete it, and continue.



Note that where delete and insert commands are concerned, pressing the
.key (the period) instructs Vim to repeat the last command.  If you
type dw (delete word) and then 3. the second command will
delete 3 more words.  Be careful!



One last word about editing.  Vim remembers up to 100 of your last
commands[bookmark: tex2html12]6  This allows you a lot of flexibility with the undo command.  Press
u in command mode to undo your last command, and keep pressing it
until you are satisfied.  Control-r works in the opposite direction,
redoing what you've just undone.






[bookmark: SECTION00080000000000000000]
Getting Around with the Cursor







[bookmark: SECTION00081000000000000000]
Basic Movement




Vim will most impact your proficiency by facilitating rapid movement of the
cursor and navigation through your document without taking your hands from the
keyboard.  Your mastery and application of movement and scrolling commands are
thus essential.





[bookmark: basic-movement][bookmark: 253]

Figure 3:
Basic Movement
	[image: \begin{figure}\begin{tabular}{ll} \par Direction & Key \\ \hline \par Left, Righ... ...& \{,\} \\ Beginning, End of Doc & gg, G \\ \par \end{tabular} \end{figure}]







Note that if you are using soft wrapping, what Vim considers to be a ``line''
is actually what we would call a paragraph since to Vim, a line ends with a
``new line'' character.  As such, moving up by one line at a time (using
j and k) actually moves the cursor up by one paragraph at a
time.  In that case, use gj and gk to advance the cursor one
screen line at a time.



You can gain some time with prepending a numerical reference, so typing
3( will take you back 3 sentences, and 5} will advance the
cursor 5 paragraphs.



Vim is aware of what you have visible on the screen, and allows you to quickly
jump around on that basis.





[bookmark: advanced-movement][bookmark: 254]

Figure 4:
Advanced Movement
	[image: \begin{figure}\begin{tabular}{ll} Position on Screen & Key \\ \hline Top Line ... ...& L \\ line n from top, bottom of window & nH, nL \\ \end{tabular} \end{figure}]










[bookmark: SECTION00082000000000000000]
Navigation by Search


 A very convenient way to get around is by
searching for a word located at the position you'd like to go to.  Vim offers
several mechanisms for searching, which gives you some flexibility in your
approach.




[bookmark: search-movement][bookmark: 255]

Figure 5:
Simple
Search Commands
	[image: \begin{figure}\begin{tabular}{ll} Search Mechanism & Key \\ \hline search forwa... ...s occurrence of word under the cursor & \char93 ,* \\ \end{tabular} \end{figure}]







The f and t commands are most useful for finding characters
that appear infrequently in your document, like punctuation marks; as such, I
don't use them frequently.  But searching using the / and ?
commands is a fast way to get around your document.  You can type ?
Dingleberry to be taken to the most recent use of that word in your document.
Continue searching in that direction by pressing n (in this case,
since we're searching upwards, n will continue searching upwards) or
N to search in the opposite direction (in this case, down).  Use a
prepended numeral to jump that many search results: ? fleabag and then
3n will search for the word fleabag and take you to the 4th
occurrence. 






[bookmark: SECTION00090000000000000000]
Scrolling


 Vim will save you time by eliminating the need to take your
hands off the keyboard in order to position the cursor by sliding those little
scroll bars up and down with the mouse.  Scrolling via the keyboard is
immensely efficient.[bookmark: tex2html16]7  At a minimum, get used to the
zz command, which will position the cursor and the line you're
currently working on, in the center of the screen. Just don't confuse it with
ZZ which is a shortcut for ``exit.''




[bookmark: scrolling][bookmark: 256]

Figure 6:
Scrolling Relative to Document
	[image: \begin{figure}\begin{tabular}{ll} Scroll Direction and Amount & Key \\ \hline Li... ...l-d \\ Full page up, down & control-b, control-f \\ \end{tabular} \end{figure}]









[bookmark: scrolling2][bookmark: 257]

Figure 7:
Scrolling Relative to Screen
	[image: \begin{figure}\begin{tabular}{ll} Position Cursor on Screen & Key \\ \hline \p... ...& zt \\ In the middle & zz \\ At the bottom & zb \\ \end{tabular} \end{figure}]










[bookmark: SECTION000100000000000000000]
Bookmarks (``Marks'')


 Placing marks through your text is an
interesting way of navigating, if you find yourself navigating back to certain
positions frequently.  But it's more important a tool as part of cutting and
pasting.  Type m plus a letter from a-z or A-Z to establish a mark,
and then ' (that's the single quote, not the backtick) plus that
letter to return the cursor to the position identified by that mark.  By
distinguishing between upper and lower case identifiers, Vim provides you 52
individual marks, more than you'll probably need.  If you forget where they
are, typing :marks at the Ex prompt will provide you a list of them,
plus the first couple of words at each mark to help you identify them.





[bookmark: SECTION000110000000000000000]
Selecting Text, Cutting and Pasting


 
[bookmark: SECTION000111000000000000000]
Visual Mode


 There
are easy ways and hard ways to select text, but they are both useful and worth
getting to know.  The easiest way is called Visual Mode.  Trigger it by
pressing v or V.  A lower case v starts highlighting text one
letter at a time; this is good when you want to edit part of a sentence.  A
capital V starts highlighting text one line at a time.  When you've
selected the text, hit d to delete it (or ``cut'' it, since it winds
up in a buffer), or y to yank (``copy'') it.  Then navigate to where
you want and hit p to place (``paste'') it.  Normally, the cursor
remains at the top of what you have just pasted, which gives you a chance to
scroll down through the next text.  But if you want to paste and go,
gp and gP paste and then reposition the cursor at the bottom
of the next text.


You can also use t and f to advance the cursor until a point just before or
right on the letter you are searching for.  I frequently start visual mode with
v and then advance up to the first comma and delete it.  That looks
like this: vf,d.  That is, ``start visual mode, advance to the comma,
delete.''  Otherwise, use the a key plus w, s, p to add a
word, sentence, or paragraph.  But I just as often use the regular motion
commands, and they work fine.





[bookmark: visual][bookmark: 258]

Figure 8:
Visual Mode Selection Commands
	[image: \begin{figure}\begin{tabular}{ll} Command & Key \\ \hline Start visually select... ... gv \\ Add word, sentence, paragraph & aw, as, ap \\ \end{tabular} \end{figure}]







The more complicated way is to use the motion commands alone to select areas.
For example, if you want to copy the entire sentence you just wrote, you could
issue y( (that is, ``yank to the beginning of the sentence'').  You'll
get no visual feedback for this operation, but the text will be yanked and
ready to place elsewhere.  As an author, though, this is a fast way to keep
your hands on the keyboard.  If you don't like what you just wrote, a simple
d( will remove your last sentence, d5b will remove the last 5
words, dTZ will delete back until the last occurrence of a capital Z,
and so on.






[bookmark: SECTION000112000000000000000]
Using Named Registers


 By using the multiple named registers, you
can hang on to whatever you copy and yank.   Select one using the quote ('') as
follows: ''ad{  means ``delete into named register `a' all the text
back to the beginning of the paragraph.''   If you forget what you've stored in
the registers, the Ex command :registers will show them all.


Using both marks and registers in a single command means you mustn't mix up
your ' and '' characters: the former is for marks and the latter for registers.
So, ''ay'b means ``Yank from the cursor's position to mark `b', and
store it in register `a.'



Finally, you can place the contents of any register with the put command
(p).  For example, ''hp will put the contents of register `h'
under the cursor, beginning on a new line (a capital P will place it
on a new line above the cursor).





[bookmark: cut-n-paste][bookmark: 259]

Figure 9:
Cutting and Pasting
	[image: \begin{figure}\begin{tabular}{ll} \em Command & \em Key \\ \hline \par Cut/De... ...& y \\ Put/Paste below, above cursor & p,P \\ \par \end{tabular} \end{figure}]










[bookmark: SECTION000120000000000000000]
Searching and Replacing


 Let's start with the most common one as an
example.  Suppose you've written a story and now you want to change one of the
character's names from Larry to Moe.  It's as simple as
%s/Larry/Moe/g which says ``For the entire document, change all
occurrences of Larry to Moe.''  The percent sign is the range identifier that
indicates the search should take place over the entire document.  You can't use
motion commands here, but you can use line numbers (which is not that useful for
authors), so :0,.s/hoo/ha/g will replace hoo with ha from line 0 to the present
line.  You can also append c for ``confirm each replacement.''





[bookmark: SECTION000130000000000000000]
Using Ranges


 In the Larry/Moe example above, the % tells
the search command to search the entire document.  But searching and replacing
is one of the few times a writer might be interested in limiting the effect of
a command to a certain range of lines rather than to the entire document.  Use visual mode to select a certain
part of your document, and then limiting the search and replace to that range
with * instead of %.  Figure 10 shows the other
options at your disposal.




[bookmark: ranges][bookmark: 260]

Figure 10:
Ranges
	[image: \begin{figure}\begin{tabular}{ll} Range & Key \\ \hline Use , or ; to separate ... ...Entire file & \% \\ Visual area & * \\ Mark t & 't \\ \end{tabular} \end{figure}]







Here are two examples: 


	.,$s/German/French/g

	``From the cursor's
current position to the end of the document, replace German by French.''


	*s/Zune/iPod/gc

	``Within the visual area, change all occurrences of Zune with iPod, and confirm each replacement.''









[bookmark: SECTION000140000000000000000]
Multiple Windows, Buffers, and Tabs


 You can split the current screen
into two parts where both both buffers show the same document, just by issuing
:split (:sp).  The screen will be divided into an upper and
lower half; this is useful for looking at multiple parts of a document
simultaneously.  It's just as easy though to divide the window into left and
right halves, with :vsplit (:vspl).  Change between views with control-w w and close every other view but the current one by issuing control-w o.  Note that if you ever use the help system, the window splits, and you will need to `quit' the help system by issuing :q to get back to your document; of course you can leave the help window open, issue control-w w to go to the other view, and return to editing your document.





[bookmark: SECTION000150000000000000000]
Inserting Special Characters




If you write in a language other than English, you will need to enter
characters not necessarily on your keyboard: accented characters and letters
in other scripts.  Even if you use English, you might find it occasionally
necessary to enter special characters.  Frankly, the easiest way to do this is
by means of your desktop environment (Gnome, KDE on Linux).[bookmark: tex2html22]8  Vim is able to
communicate with the desktop processes and receive whatever characters you
send it.  However, Vim has another mechanism of its own for producing special
characters.  In Vim they are called  ``digraphs,'' 
two keystroke combinations that lead to the production of a single
character, like 'a for á and DG for the degree symbol (35[image: $^{\circ}$]C).



When, while editing, you need a special character, press control-k and
then the two digit code for that letter.  This incomplete table shows some of
the digraphs you would use for text with diacritical marks common to European
languages.  Type :help digraphs for a complete list.  





[bookmark: digraphs][bookmark: 261]

Figure 11:
Some Common Digraphs
	[image: \begin{figure}\begin{tabular}{lcl} Character Name & Char & Meaning \\ \hline E... ...mma & , & Cedilla \\ Underline & \_ & Underline \\ \end{tabular} \end{figure}]







As an example, if you want a c cedilla (ç), the comma key plus one other character is the way to produce it, so as you're typing in insert mode, type control-k then ,c.  If you want a tilde n (ñ), type control-k then ?n. 






[bookmark: SECTION000160000000000000000]
Dealing with DOS, Unix conversion problems




You will occasionally have to deal with conversion of a DOS file which appears
in Vim with a ˆM character at the end of each line.  The simplest way to do
so is to simply search for and replace them, as follows:
%s/control-m//g.  That is, to search for a ˆM you search for
control-M.  You can just as easily search for carriage returns ([image: $\backslash$]r)
like this: %s/[image: $\backslash$]r//g.  If you're using Vim on a Windows machine, the opposite may occur, and you'll find ˆJ characters at the line ends and beginnings of a Unix file.  Treat it the same way, searching and replacing.



Both phenomena are caused by Vim failing to identify a text file as one format or another (usually because both types of line endings are present).  The fileformat command is how you declare your intention; the next time you save the file the appropriate line endings will be used, and when you reopen it the strange characters should disappear.  For example :set ff=unix.






[bookmark: SECTION000170000000000000000]
Spell Checking


 Vim took a big step forward with version 7, which
introduced spell checking and thus made Vim a much more attractive system for writing long text works.  To take advantage of the new functionality, begin by
typing :set spell, which turns on the spell checker with the default
language.  


Once the spell checker is running, the keystrokes [s and ]s
move the cursor from error to error.  With the cursor positioned over a
misspelled word, the keystroke zg declares that this word is `good'
and should henceforth be ignored; zw identifies a good word as one
that should've been identified as an error.  Finally, z= will request
a list of suggestions from the ispell program, which allows you to choose what
you want.  



For Vim to be able to add these words to a custom dictionary, you must define your ``spellfile,'' and Vim's useful approach to doing so is to permit you to define and use as many spellfiles as you'd like.  As such, you can have one spelling list for acronyms you need for one type of file without `contaminating' another dictionary.  For example, :set spellfile=.spellfile.sailing.add creates a custom wordlist where you can put all your arcane sailing acronyms, and then choose not to load that dictionary while working on your medical thesis.



This is useful but not perfect - I happen to think emacs has the advantage
here - and consequently prefer to exit vim and use the ispell program to spell
check text files already written; the advantage is no highlighted text
distracts you.  However, as an editing tool, in-program spell checking can be a
useful and productive feature.






[bookmark: SECTION000180000000000000000]
Macros


The easiest way to deal with repetitive text is to assign it to a keyboard macro using the imap command.  If you enter :imap „br Best regards,, the effect will be to map the expression ``Best regards,'' to the key combinaton „br.  Try a couple of these so you are familiar with the possibilities.  Choose something exotic like the double-comma combination I use here to avoid stumbling on those keys in regular text.  Note that once you've defined a macro, the cursor will change when typing if you begin to enter those first keys while it decides whether or not what you're typing triggers a macro.  When you quit Vim, the macros will vanish.


For a longer term solution, put the macros in a file and source it, as follows. Let's say you create a file called ``keystrokes.vim''  Stuff it with lines like imap „br Best regards,.  Then, from Vim, issue :source keystrokes.vim and the new functionality will be imported.






[bookmark: SECTION000190000000000000000]
Learning more about Vim




While running Vim, the :help command is a great resource, if you know
the name of what you're looking for (for example, :help wrap), and not
so helpful if you don't.  For more general questions, tips, tricks, FAQs, and
similar, Vim's web site is particularly useful: [bookmark: tex2html24]www.vim.org.  In
particular, the vim tips wiki is a repository for all sorts of tricks. Once
you've mastered the basics, have a look at what the Vim experts have
contributed.  At [bookmark: tex2html25]http://vim.wikia.com/wiki/Vim_documentation you can find
several other high quality sources of information.  



I highly recommend Steve Oualline's book Vi Improved - Vim.  Although
it was written for version 5.7, it is still mostly up to date and covers a lot
more than this Woodnotes Guide does!  It is even available as PDF download.






[bookmark: SECTION000200000000000000000]
Acknowledgments, License, and Version History




As usual, no man is an island.  Thanks first of all to Norman Kraft ([bookmark: tex2html26]http://zenwrites.com who read my Emacs for writers guide ([bookmark: tex2html27]http://therandymon.com/content/view/16/98/) and suggested this document.  Thanks as well to Laurent Gr'egoire ([bookmark: tex2html28]http://tnerual.eriogerg.free.fr) for his fantastic Vim Reference Card, which helped get me started when I was learning Vim, and has been a lifesaver ever since.



This document is published under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5
license.[bookmark: tex2html29]9Please send comments, criticisms, and corrections to me at the email address
found at my website.  Enjoy this guide: I enjoyed creating it.






	July 2009: first draft









[bookmark: SECTION000210000000000000000]
About this document ...


 The Woodnotes Guide to Vim for Writers
This document was generated using the
LaTeX2HTML translator Version 2008 (1.71)


Copyright © 1993, 1994, 1995, 1996,
Nikos Drakos, 
Computer Based Learning Unit, University of Leeds.


Copyright © 1997, 1998, 1999,
Ross Moore, 
Mathematics Department, Macquarie University, Sydney.


The command line arguments were: 

 latex2html -split 0 -nonavigation vimforwriters.tex


The translation was initiated by Randall Wood on 2015-06-13



Footnotes


	[bookmark: foot247]...
Writers1

	[bookmark: tex2html3]http://therandymon.com/content/view/16/98/ 



	[bookmark: foot248]...
Gr\'egoire.2

	[bookmark: tex2html5]http://tnerual.eriogerg.free.fr 



	[bookmark: foot249]... tutorial3

	[bookmark: tex2html7]http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html



	[bookmark: foot24]... well4

	``G'' because it is built with the GTK+ toolkit''



	[bookmark: foot251]... cursor.5

	The fact that the text is
inserted at the cursor is important.  If you insert text in command mode
using the put command (p or P) it is sometimes
inserted on a new line, and you must then join the two lines with j.



	[bookmark: foot72]...
commands6

	This is configurable and can be much, much higher if you
wish.



	[bookmark: foot113]... efficient.7

	Remember
``forward/backward'' and ``up/down''.



	[bookmark: foot196]... Linux).8

	On KDE,
  open the control panel and under Regional/Accessibility - Keyboard layout,
  enable ``Enable keyboard layouts.''   On Gnome, either add the ``Special Characters'' applet to a panel or enable the keyboard switcher.



	[bookmark: foot262]...
license.9

	[bookmark: tex2html30]http://creativecommons.org/licenses/by-nc-sa/2.5/





 



Randall Wood
2015-06-13




img6.png
Scroll Direction and Amount  Key

Line up, down control-E, control-Y
Half page up, down control-u, control-d
Full page up, down control-b, control-f





img7.png
Position Cursor on Screen
‘At the top zt
In the middle 2z
‘At the bottom b





img4.png
TYosition on Screen

3

Top Line
Middle Line
Bottom Line
line n from top, bottom of window

greE





img5.png
Search Mechanism Key
Search forward (‘dowir) 7
search backward (‘up”) ?
next, previous occurrence N
next, previous occurrence of character ¢ fe, Fe
Just before next occurrence of character ¢ te, Te

next, previous occurrence of word under the cursor

#,





img2.png
Sunction €y
Tnsert before, after cursor La
Insert at beginning, end of line LA
Change text of motion m cm
Change to end of line c

Delete text of motion m dm
Delete to end of line D

Delete letter under, before cursor xX

Change letter under cursor and keep typing
Replace letter under cursor

Open a new line below, above cursor

Join this line to the next

~omw
e}





img3.png
Direction
Teft, Right

Down, Up

Screen Line Down, Up
Forward, Backward
word

sentence

paragraph

Beginning, End of Doc





img1.png
Command Key

“Edit Open) e
Write (Save)  w
Save as :saveas

Append to file w>>





img10.png
Range

k

Use , or ; to separate two line positions |, ;
Current line
Last line in file
Entire file
Visual area
Mark t

R





img8.png
Command Key

Start visually selecting by character, line V.V
Exchange cursor position with start of highlighting o
Start highlighting on previous visual area av

Add word, sentence, paragraph aw, as, ap





img9.png
Key

Cut/Delete d
Yank/Copy y
Put/Paste below, above cursor p.P





cover_image.jpg
The Woodnotes Guide to
Vim for Writers

Randall S Wood

53
ot
=)
et
o
=
€






img12.png
Character Name

Chax Meaning

Exclamation mark
Apostrophe
Greater-Than sign
Question mark
Hyphen-Minus
Left parenthesis
Full stop

Colon

Comma

Underline

eV

Grave

Acute accent
Circumflex accent
Tilde

Macron

Breve

Dot above
Diaeresis

Cedilla

Underline





img11.png





img13.png





